
Prepared for
badconfig.eth
Cytonic Network

Prepared by
Frank Bachman
Aaron Esau
Zellic

July 31, 2024

Solana & EVM Depositors
Smart Contract Security Assessment

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Solana & EVMDepositors 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. DOS in claim/migrate due to unenforced ATA usage in deposit 11

3.2. Edge casewhen contract is paused after a withdrawal 13

3.3. Unpausing after migration causes insolvency 15

3.4. Payable receive functionmissing accounting 16

3.5. The _deposit function emits the wrong event 17

3.6. The cancelWithdrawal function emits an event with incorrect value 18

3.7. Integer underflow in _withdraw 20

Zellic © 2024 ← Back to Contents Page 2 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

4. Discussion 20

4.1. Warning regarding the contract owner's abilities 21

4.2. Anti-patterns identified in the Solana program 21

5. Assessment Results 22

5.1. Disclaimer 23

Zellic © 2024 ← Back to Contents Page 3 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 4 of 23

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Cytonic Network from July 22nd to July 24th,
2024. During this engagement, Zellic reviewed Solana & EVM Depositors's code for security
vulnerabilities, design issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Is it possible for an attacker to drain the contract of funds?
• Can funds be locked in the contract?
• Is the accounting sound?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody
• Backend functionality for airdrops and user rewards

1.4. Results

During our assessment on the scoped Solana & EVM Depositors contracts, we discovered seven
findings. Nocritical issueswere found. Onefindingwasofmedium impact, threewereof low impact,
and the remaining findings were informational in nature.

Additionally, Zellic recorded its notes and observations from the assessment for Cytonic Network's
benefit in the Discussion section (4. ↗).

Zellic © 2024 ← Back to Contents Page 5 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 0

■ Medium 1

■ Low 3

■ Informational 3

Zellic © 2024 ← Back to Contents Page 6 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

2. Introduction 2.1. About Solana & EVMDepositors

Cytonic Network contributed the following description of Solana & EVMDepositors:

Cytonic Bridge V1 bootstraps liquidity for the cytonic ecosystem. The bridge will eventually
evolve to allow freely bridging assets between Cytonic and other blockchains.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform’s design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.

Zellic © 2024 ← Back to Contents Page 7 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2024 ← Back to Contents Page 8 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

2.3. Scope

The engagement involved a review of the following targets:

Solana & EVMDepositors Contracts

Types Solidity, Solana

Platforms EVM-compatible, Solana

Target cytonic-bridge-evm

Repository https://github.com/cytonic-network/cytonic-bridge-evm ↗

Version 5a45f51b09f91444d01b0e1c23fd3b9016170702

Programs src/Depositor.sol

Target cytonic-bridge-solana

Repository https://github.com/cytonic-network/cytonic-bridge-solana ↗

Version 3553735e96ae29528870f1c0fc4c3354b80f8a63

Programs programs/depositor/**

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of four person-days. The assess-
ment was conducted by two consultants over the course of three calendar days.

Zellic © 2024 ← Back to Contents Page 9 of 23

https://github.com/cytonic-network/cytonic-bridge-evm
https://github.com/cytonic-network/cytonic-bridge-solana

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

Contact Information

The following project manager was associated
with the engagement:

Jacob Goreski
Jr. EngagementManager
jacob@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Frank Bachman
Engineer
frank@zellic.io ↗

Aaron Esau
Engineer
aaron@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

July 22, 2024 Kick-off call

July 22, 2024 Start of primary review period

July 24, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 10 of 23

mailto:jacob@zellic.io
mailto:frank@zellic.io
mailto:aaron@zellic.io

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

3. Detailed Findings 3.1. DOS in claim/migrate due to unenforced ATA usage in deposit

Target Depositor

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

It was found that in Deposit andmoreover throughout the Depositor program, the usage of Associ-
ated Token Accounts (ATAs) is not enforced for the vault token account.

#[account(mut,
constraint =

receiver_token_account.owner == vault_data.key() &&
receiver_token_account.mint == vault_data.mint,

)]
pub receiver_token_account: Box<Account<'info, TokenAccount>>,

#[account(mut,
seeds = [b"vault-data".as_ref(), &vault_data.owner.to_bytes(),
&vault_data.mint.to_bytes()],
bump = vault_data.bump,

)]
pub vault_data: Box<Account<'info, VaultData>>,

The Solana token program allows users to arbitrarily create many token accounts belonging to the
samemint. Note that anyone can create these accounts for a specified owner.

It is therefore possible for a caller to create a separate vault token account to deposit the funds.

Impact

The amount deposited by the user is transferred to the newly created token account, not the vault
ATA. While the ATA is in fact still owned by vault_data, the claims/withdrawals will be processed
through the ATA. This could result in withdrawals failing and manual intervention being required to
process the withdrawals.

Moreover, this completely breaks the migrate function, which uses the total amount from
vault_data.

Zellic © 2024 ← Back to Contents Page 11 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

impl Migrate<'_> {
pub fn actuate(ctx: &mut Context<Self>, _params: &MigrateParams) ->
Result<()> {

spl_transfer(
CpiContext::new_with_signer(

ctx.accounts.token_program.to_account_info(),
SplTransfer {

authority: ctx.accounts.vault_data.to_account_info(),
from: ctx.accounts.vault_token_account.to_account_info(),
to: ctx.accounts.sender_token_account.to_account_info

[...]
ctx.accounts.vault_data.total_deposited,

The SPL transfer will fail here since the amount is divided into multiple token accounts. However,
the total deposited amount is used for transfer.

Recommendations

It is recommended to enforce the usage of ATAs for the vault accounts throughout the Depositor
program.

Moreover, in the migrate function, the token-account balance should be used instead of the vault-
deposited amount. This helps avoid failures in transfer in case of any inconsistencies between
vault_data and the vault token account.

Remediation

This issuehasbeenacknowledgedbyCytonicNetwork, andfixeswere implemented in the following
commits:

• 636adc24 ↗
• 818a3e5c ↗

Zellic © 2024 ← Back to Contents Page 12 of 23

https://github.com/cytonic-network/cytonic-bridge-evm/commit/636adc24c9c3b342ace6586a928655230f2e8b97
https://github.com/cytonic-network/cytonic-bridge-evm/commit/818a3e5cf19e6e9df22ac718bb99914c022df2e4

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

3.2. Edge casewhen contract is paused after a withdrawal

Target Depositor

Category Business Logic Severity Medium

Likelihood Low Impact Low

Description

When a user withdraws, the code immediately removes funds from themapping (i.e., it unaccounts
for the funds immediately):

function _withdraw(address asset, uint256 amount, address user) internal {
if (amount == 0) revert ZeroWithdraw();
totalDeposited[address(asset)] -= amount;
usersBalances[address(asset)][user] -= amount;

}

However, if the owner then pauses the contract before the user has the opportunity to claim the
withdrawal, the funds remain unaccounted for in themappings.

The user can also no longer claim their withdrawal because the claim function has the whenNot-
Pausedmodifier.

Impact

The impact depends on how the off-chain software interacts with the contract. If the off-chain soft-
ware is not aware of pending withdrawals when the contract is paused, the off-chain software may
not account for the funds that are still in the contract that are unable to be claimed; that is, at worst,
the user will be at a loss, and funds will remain in the contract unlessmigrated.

Recommendations

Ensure the off-chain software tracks Claim events rather than Withdraw events, or allow the claim
function to be called evenwhen the contract is paused.

Remediation

Cytonic Network provided the following explanation in relation to this issue:

Zellic © 2024 ← Back to Contents Page 13 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

As with the recommendation, backend also tracks pending withdrawals and will determine
their migration logic if they won't be claimed from the contract in due time.

Zellic © 2024 ← Back to Contents Page 14 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

3.3. Unpausing after migration causes insolvency

Target Depositor

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

The migrate function — which may only be called when the contract is paused — transfers funds
without updating the totalDeposited and userBalancesmappings:

function migrate(address asset, address to) external onlyOwner whenPaused {
if (asset == address(0)) {

payable(to).transfer(address(this).balance);
} else {

IERC20(asset).safeTransfer(msg.sender,
IERC20(asset).balanceOf(address(this)));
}

}

Impact

Note that unpausing after migrating funds will cause the contract to be insolvent, as users may still
attempt to withdraw their funds.

Recommendations

Though it is likelynotworth theaddedcomplexity, itwouldbe ideal tohaveaseparatepausingmech-
anism formigration that permanently prevents depositing andwithdrawing.

Remediation

Cytonic Network provided the following explanation in relation to this issue:

Creating extra pausingmechanics truthfully don't worth it as there are still mayways of bring-
ing contract itself into inconsistency e.g point 3.2, however after migration process starts, it
won't be an issue as the contract won't bemore responsible for fund keeping at all.

Zellic © 2024 ← Back to Contents Page 15 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

3.4. Payable receive functionmissing accounting

Target Depositor

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The receive function is marked as payable, which allows Ether to be transferred into the contract
using external calls with empty calldata:

receive() external payable whenNotPaused {}

However, the function lacks accounting, leaving Ether in the contract without emitting the Deposit
event and recording the deposit in themapping.

Impact

The contract will accept Ether without recording the deposit, whichmay lead to confusion and loss
of funds.

Recommendations

Call _deposit and emit a Deposit event in the receive function using msg.sender as the depositor.

Remediation

Cytonic Network provided the following explanation in relation to this issue:

Due to the fact that it's prototyped in a way users need to use depositETH and specify referral
code, we've decided to simply add revert functionality to ban the ability of row funds receiv-
ing from the contract. If a user will not use our frontend (with depositETH) and manually will
transfer eth on contract, hewill receive failure and finallywill deposit throughour appwhatwill
allow him to utilise airdropmechanics

A changemitigating this finding wasmade in commit d8b9143b ↗.

Zellic © 2024 ← Back to Contents Page 16 of 23

https://github.com/cytonic-network/cytonic-bridge-evm/commit/d8b9143b76caba4a0ea6ef6be11c796bb46f699f

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

3.5. The _deposit function emits the wrong event

Target Depositor

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

The _deposit function emits the ZeroWithdrawal() event instead of ZeroDeposit():

function _deposit(address asset, uint256 amount, address user) internal {

if (amount == 0) revert ZeroWithdraw();

if (!allowedAssets[asset]) revert AssetNotAllowed();
totalDeposited[address(asset)] += amount;
usersBalances[address(asset)][user] += amount;

}

Impact

The failure event is misleading and does not reflect the actual operation that occurred.

Recommendations

Replace the ZeroWithdrawal() event with ZeroDeposit().

Remediation

This issue has been acknowledged by Cytonic Network, and a fix was implemented in commit
a3acea04 ↗.

Zellic © 2024 ← Back to Contents Page 17 of 23

https://github.com/cytonic-network/cytonic-bridge-evm/commit/a3acea04e5610dc70874d535a8bfb5cd28b1ea2a

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

3.6. The cancelWithdrawal function emits an event with incorrect value

Target Depositor

Category CodingMistakes Severity Low

Likelihood Medium Impact Low

Description

The cancelWithdrawal function emits a Claim event:

function cancelWithdraw(uint128 id) external whenNotPaused {
ClaimData memory claimOrder = usersClaims[id];
if (claimOrder.user != msg.sender) revert InvalidClaimAuthority();

_deposit(claimOrder.asset, claimOrder.amount, claimOrder.user);

delete usersClaims[id];

emit Claim(id, false, block.timestamp);

emit Deposit(claimOrder.asset, claimOrder.user, "", claimOrder.amount,
block.timestamp);

}

TheClaimevent isused tonotifyoff-chainsystems thatawithdrawal tickethasbeenused—whether
claimed or canceled—where the canceled boolean indicates how the ticket was used:

/// @notice Claim event
/// @param id unique id for a claim
/// @param canceled if true - this claim is a cancelation and if false - user

retreived funds
/// @param ts block timestamp
event Claim(uint256 id, bool canceled, uint256 ts);

The cancelWithdrawal functionmistakenly passes false as the canceled parameter.

Impact

The Claim event emittedmay bemisleading to off-chain systems that rely on it to track the status of
withdrawal tickets.

Zellic © 2024 ← Back to Contents Page 18 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

Recommendations

Replace the false value with true in the Claim event emitted by the cancelWithdrawal function.

Remediation

This issue has been acknowledged by Cytonic Network, and a fix was implemented in commit
b2a5e5f5 ↗.

Zellic © 2024 ← Back to Contents Page 19 of 23

https://github.com/cytonic-network/cytonic-bridge-evm/commit/b2a5e5f53ae03bd1d229cd083a6ff246f1506f1a

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

3.7. Integer underflow in _withdraw

Target Depositor

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

The _withdraw function does not ensure that the userBalances entry for the user and asset is suf-
ficient to cover the withdrawal amount:

function _withdraw(address asset, uint256 amount, address user) internal {
if (amount == 0) revert ZeroWithdraw();
totalDeposited[address(asset)] -= amount;

usersBalances[address(asset)][user] -= amount;

}

Impact

A user requesting a withdrawal that is too large will be confronted with an underflow reversion as
opposed to an intuitive reversion reason.

Recommendations

Consider requiring that the withdrawal amount is less than or equal to the user's balance before
attempting the subtraction.

Remediation

This issue has been acknowledged by Cytonic Network, and a fix was implemented in commit
3e9d24e5 ↗.

Zellic © 2024 ← Back to Contents Page 20 of 23

https://github.com/cytonic-network/cytonic-bridge-evm/commit/3e9d24e5839fe784dd91f8eba46633188eef19af

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

4. Discussion The purpose of this section is to document miscellaneous observations that we made during the
assessment. These discussion notes are not necessarily security related and do not convey thatwe
are suggesting a code change.

4.1. Warning regarding the contract owner's abilities

Note that the contract owner has the ability to pause the contract and withdraw funds at any time
without any obligations to users enforced in the contract.

Cytonic Network stated that this functionality is only meant to be used in adverse scenarios (e.g.,
smart contract hacks) and the owner will be a multi-sig. While this does not fully mitigate the cen-
tralization risks, it reduces the impact of a single key being compromised.

We recommended that these centralization risks be clearly documented for users so that they are
aware of the extent of the owner's control over the platform. This can help users make informed
decisions about their participation in the project. Additionally, clear communication about the cir-
cumstances in which the owner may exercise these powers can help build trust and transparency
with users.

4.2. Anti-patterns identified in the Solana program

The following are certain anti-patterns that were identified within the Solana program during the
audit. While these presently do not pose risk, future refactoring of the codebasemay change this. It
is therefore recommended to fix these anti-patterns tomitigate any future risk.

Size calculation for program accounts

TheDepositor programuses theAnchor framework, which usesBorsh serialization for programac-
counts. It was found that core::mem::size_of was used to compute the size to be reserved for
multiple program accounts.

#[account(
init_if_needed,
payer = sender,
space = 8 + core::mem::size_of::<UserData>(),
seeds = [b"vault-user".as_ref(), &vault_data.key().to_bytes(),
&sender.key().to_bytes()],
bump,

)]
pub user_data: Box<Account<'info, UserData>>,

Zellic © 2024 ← Back to Contents Page 21 of 23

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

This is currently not an issue because the types being used for the current program structures just
happen tohave the samesizeswithBorsh andnativeRust types. However, there are types forwhich
Borshsizingvariesand therefore it is recommended tohardcodestructuresizesaccordingly. Please
refer to The Anchor Book ↗ for more information.

Use of checkedmath

It was noticed that there were some inconsistencies in regards to the usage of checkedmath in the
Depositor program.

ctx.accounts.vault_data.total_deposited += params.amount;
ctx.accounts.user_data.deposit_amount += params.amount;

While this is not an issue since the overflow-checks config is enabled, it is recommended to use
checkedmath where integer overflows are security critical for clarity.

Unused accounts present in Withdraw

The Withdraw instruction requires the sender_token_account and vault_token_account ac-
counts. However, these accounts are unused and can be removed.

Remediation

These issueshavebeenacknowledgedbyCytonicNetwork, andfixeswere implemented incommits
b6b5fb ↗, 170db5 ↗ and 9d2ba1 ↗.

Zellic © 2024 ← Back to Contents Page 22 of 23

https://book.anchor-lang.com/anchor_references/space.html
https://github.com/cytonic-network/cytonic-bridge-evm/commit/b6b5fb34a0897cf078899c384a78b829deea4625
https://github.com/cytonic-network/cytonic-bridge-evm/commit/170db5270843b228e3d2c5ff5e69c2d71b8f02f8
https://github.com/cytonic-network/cytonic-bridge-evm/commit/9d2ba1b67266348f0ad823b752706a4cf887ec70

Solana & EVMDepositors Smart Contract Security Assessment July 31, 2024

5. Assessment Results At the time of our assessment, the reviewed code was not deployed to the Ethereum Mainnet or
Solana.

During our assessment on the scoped Solana & EVM Depositors contracts, we discovered seven
findings. Nocritical issueswere found. Onefindingwasofmedium impact, threewereof low impact,
and the remaining findings were informational in nature.

5.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 23 of 23

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Solana & EVM Depositors
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	DOS in claim/migrate due to unenforced ATA usage in deposit
	Edge case when contract is paused after a withdrawal
	Unpausing after migration causes insolvency
	Payable receive function missing accounting
	The _deposit function emits the wrong event
	The cancelWithdrawal function emits an event with incorrect value
	Integer underflow in _withdraw

	Discussion
	Warning regarding the contract owner's abilities
	Anti-patterns identified in the Solana program

	Assessment Results
	Disclaimer

