
Signature: 048ab315eca35803548cb08829bc83e0cdd08dfd8bc28672c9fc670301771847

Cytonic Audit Report

Cytonic Audit Report
Executive Summary

Scope

Disclaimer

Auditing Process

Vulnerability Severity

Findings

[Low] migrate uses wrong address

[Low] Depositor::migrate lacks zero address check

[Low] The lack of restrictions on migrate may cause funds to be stuck du…

[Low] Migrate::actuate does not check if the VaultData account is frozen

[Info] Not emit events

[Info] No need to check allowedAssets when withdrawing

[Info] Upgradeable contract is missing a __gap storage variable to allow…

[Info] Uses call Instead of transfer

[Info] freeze naming convention

[Info] Centralization risk

https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6
https://docs.fuzz.land/Cytonic-Audit-Report-11a112096c2180f5915de594571915a6

Executive Summary
From Oct 4, 2024, to Oct 10, 2024, the Cytonic team engaged Fuzzland to
conduct a thorough security audit of their bridge project. The primary
objective was to identify and mitigate potential security
vulnerabilities, risks, and coding issues to enhance the project's
robustness and reliability. Fuzzland conducted this assessment over 10
person-days, involving 2 engineers who reviewed the code over a span of
5 days. Employing a multifaceted approach that included static
analysis, fuzz testing, formal verification, and manual code review,
the Fuzzland team identified 10 issues across different severity levels
and categories.

Scope
Project Name Cytonic Bridge EVM

Repository cytonic-bridge-evm​

Commit d07736c87afa20bea192b58a65ce47c6757b5730

Fix Commit 15593a0ad49d5793ed778ab4dc574ff926747215

Language Solidity

Scope **/*.sol

Project Name Cytonic Bridge Solana

Repository cytonic-bridge-solana​

Commit 61cc8622154cc0925795942ed8f9773551ab19b4

Fix Commit 106dcf395c387e6be06542be09dd906887502a59

Language Rust - Anchor (Solana)

Scope programs/**/*.rs

https://github.com/cytonic-network/cytonic-bridge-evm/
https://github.com/cytonic-network/cytonic-bridge-evm/
https://github.com/cytonic-network/cytonic-bridge-solana
https://github.com/cytonic-network/cytonic-bridge-solana

Disclaimer
The audit does not ensure that it has identified every security issue
in the smart contracts, and it should not be seen as a confirmation
that there are no more vulnerabilities. The audit is not exhaustive,
and we recommend further independent audits and setting up a public bug
bounty program for enhanced security verification of the smart
contracts. Additionally, this report should not be interpreted as
personal financial advice or recommendations.

Auditing Process
• Static Analysis: We perform static analysis using our internal tools

and Slither to identify potential vulnerabilities and coding issues.

• Fuzz Testing: We execute fuzz testing with our internal fuzzers to
uncover potential bugs and logic flaws.

• Invariant Development: We convert the project into Foundry project
and develop Foundry invariant tests for the project based on the
code semantics and documentations.

• Invariant Testing: We run multiple fuzz testing tools, including
Foundry and ItyFuzz, to identify violations of invariants we
developed.

• Formal Verification: We develop individual tests for critical
functions and leverage Halmos to prove the functions in question are
not vulnerable.

• Manual Code Review: Our engineers manually review code to identify
potential vulnerabilities not captured by previous methods.

Vulnerability Severity
We divide severity into four distinct levels: high, medium, low, and
info. This classification helps prioritize the issues identified during
the audit based on their potential impact and urgency.

• High Severity Issues represent critical vulnerabilities or flaws
that pose a significant risk to the system's security,
functionality, or performance. These issues can lead to severe
consequences such as fund loss, or major service disruptions if not
addressed immediately. High severity issues typically require urgent
attention and prompt remediation to mitigate potential damage and
ensure the system's integrity and reliability.

• Medium Severity Issues are significant but not critical
vulnerabilities or flaws that can impact the system's security,
functionality, or performance. These issues might not pose an
immediate threat but have the potential to cause considerable harm
if left unaddressed over time. Addressing medium severity issues is
important to maintain the overall health and efficiency of the
system, though they do not require the same level of urgency as high
severity issues.

• Low Severity Issues are minor vulnerabilities or flaws that have a
limited impact on the system's security, functionality, or
performance. These issues generally do not pose a significant risk
and can be addressed in the regular maintenance cycle. While low
severity issues are not critical, resolving them can help improve
the system's overall quality and user experience by preventing the
accumulation of minor problems over time.

• Informational Severity Issues represent informational findings that
do not directly impact the system's security, functionality, or
performance. These findings are typically observations or
recommendations for potential improvements or optimizations.
Addressing info severity issues can enhance the system's robustness
and efficiency but is not necessary for the system's immediate
operation or security. These issues can be considered for future
development or enhancement plans.

Below is a summary of the vulnerabilities with their current status,
highlighting the number of issues identified in each severity category
and their resolution progress.

 Number Resolved

High Severity Issues 0 0

Medium Severity Issues 0 0

Low Severity Issues 4 4

Informational Severity Issues 6 6

Findings

[Low] migrate uses wrong address
In the migrate function, the contract owner uses msg.sender as
the recipient address. This may result in assets being transferred to
the wrong address, leading to asset loss or incorrect transfers.

The contract owner incorrectly sets the to parameter to msg.sender when
calling migrate, resulting in assets being transferred to the wrong
address.

​

function migrate(address asset, address to) external onlyOwner whenPaused {
 if (asset == address(0)) {
 payable(to).transfer(address(this).balance);
 } else {
 IERC20(asset).safeTransfer(msg.sender,
IERC20(asset).balanceOf(address(this)));
 }
}

Recommendation:

It is recommended to replace msg.sender with to to ensure that
assets are correctly transferred to the specified recipient address.

​

function migrate(address asset, address to) external onlyOwner whenPaused {
 if (asset == address(0)) {
 payable(to).transfer(address(this).balance);
 } else {
 IERC20(asset).safeTransfer(to,
IERC20(asset).balanceOf(address(this))); // Fix: Use to instead of msg.sender
 }
}

Status: Fixed

[Low] Depositor::migrate lacks zero address check
Since this function is transferring funds, a 0 address check is
required to prevent the funds from being transferred to the 0 address
by mistake when transferring ETH funds.

​

function migrate(address asset, address to) external onlyOwner whenPaused {
 if (asset == address(0)) {
 payable(to).transfer(address(this).balance);
 } else {
 IERC20(asset).safeTransfer(msg.sender,
IERC20(asset).balanceOf(address(this)));
 }
}

Recommendation:

Add a zero address check.

Status: Fixed

[Low] The lack of restrictions on migrate may
cause funds to be stuck due to unlockPeriod after
the user withdraw
The migrate function of the contract allows the contract owner to
migrate assets when the contract is paused. If the contract is paused
and the assets are migrated during the unlockperiod of the user's
withdrawal request, the user will not be able to withdraw the assets
when calling claim, but the data in the usersClaims mapping still
exists, resulting in the user being unable to claim.

​

function migrate(address asset, address to) external onlyOwner whenPaused {
 if (asset == address(0)) {
 payable(to).transfer(address(this).balance);
 } else {
 IERC20(asset).safeTransfer(msg.sender,
IERC20(asset).balanceOf(address(this)));
 }
}

​

function withdraw(address asset, uint128 id, uint256 amount) external
whenNotPaused {
 if (!allowedAssets[asset]) revert AssetNotAllowed();
 _withdraw(asset, amount, msg.sender);

 if (usersClaims[id].user != address(0)) revert ExistingClaimId();
 uint256 claimableAfter = block.timestamp + unlockPeriod;
 usersClaims[id] = ClaimData(msg.sender, asset, claimableAfter, amount);
 emit Withdraw(asset, msg.sender, id, amount, claimableAfter,
block.timestamp);
}

Recommendation:

Before executing migrate , if the current user's usersClaims is not 0,
cancel the user's withdrawal request, or advance the user's claim.

Status: Acknowledged

[Low] Migrate::actuate does not check if the
VaultData account is frozen
In other functions related to VaultData accounts, the is_frozen field is
always checked. Yet in Migrate::actuate this field is not checked.

​

impl Migrate<'_> {
 pub fn actuate(ctx: &mut Context<Self>, _params: &MigrateParams) ->
Result<()> {
 spl_transfer(
 CpiContext::new_with_signer(
 ctx.accounts.token_program.to_account_info(),
 SplTransfer {
 authority: ctx.accounts.vault_data.to_account_info(),
 from: ctx.accounts.vault_token_account.to_account_info(),
 to: ctx.accounts.sender_token_account.to_account_info(),
 },
 &[&[
 b"vault-data".as_ref(),
 &ctx.accounts.vault_data.admin.to_bytes(),
 &ctx.accounts.vault_data.mint.to_bytes(),
 &[ctx.accounts.vault_data.bump],
]],
),
 ctx.accounts.vault_token_account.amount,
)?;
 Ok(())
 }
}

Recommendation:

​

if !ctx.accounts.vault_data.is_frozen {
 return Err(error!(Errors::IsFrozen));
}

Status: Fixed

[Info] Not emit events
The toggleAsset and togglePurchaseAsset functions are used to enable or
disable the deposit and purchase functionality for assets,
respectively. However, these functions do not emit any events. This
makes it impossible for external systems or users to track state
changes, reducing the transparency and auditability of the contract.

Other modifications to key parameters also lack corresponding events

​

 function toggleAsset(address asset) external onlyOwner {
 allowedAssets[asset] = !allowedAssets[asset];
 }

 function updateUnlockPeriod(uint256 _unlockPeriod) external onlyOwner {
 unlockPeriod = _unlockPeriod;
 }

 function togglePurchaseAsset(address asset) external onlyOwner {
 allowedPurchaseAssets[asset] = !allowedPurchaseAssets[asset];
 }

 function updateTreasury(address _treasury) external onlyOwner {
 treasury = _treasury;
 }

Recommendation:

Consider defining and emitting events whenever sensitive changes occur.

Status: Fixed

[Info] No need to check allowedAssets when
withdrawing
Since the if (!allowedAssets[asset]) check has already been done during
deposit, there is no need to check again during withdrawal.

​

function withdraw(address asset, uint128 id, uint256 amount) external
whenNotPaused {
 if (!allowedAssets[asset]) revert AssetNotAllowed();
 _withdraw(asset, amount, msg.sender);

 if (usersClaims[id].user != address(0)) revert ExistingClaimId();
 uint256 claimableAfter = block.timestamp + unlockPeriod;
 usersClaims[id] = ClaimData(msg.sender, asset, claimableAfter, amount);
 emit Withdraw(asset, msg.sender, id, amount, claimableAfter,
block.timestamp);
}

Recommendation:

Delete if (!allowedAssets[asset]) revert AssetNotAllowed();

Status: Fixed

[Info] Upgradeable contract is missing a __gap
storage variable to allow for new storage
variables in later versions
See link for a description of this storage variable. While some
contracts may not currently be sub-classed, adding the variable now
protects against forgetting to add it in the future.

this

Recommendation:

It is considered a best practice in upgradeable contracts to include
astate variable named __gap . This __gap state variable will be used as
a reserved space for future upgrades. It allows adding new state
variables freely in the future without compromising the storage
compatibility with existing deployments. The size of the __gap array is
usually calculated so that the amount of storage used by a contract
always adds up to the same number (usually 50 storage slots).

Status: Fixed

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps

[Info] Uses call Instead of transfer
The contracts sends ETH using the transfer method (at most 2300 gas)
instead of the safer call method. If receive address is a contract,
then this transfer may fall.

​

src/Depositor.sol:
155 if (claimOrder.asset != address(0))
IERC20(claimOrder.asset).safeTransfer(to, claimOrder.amount);
156: else payable(to).transfer(claimOrder.amount);
157 emit Claim(id, false, block.timestamp);

178 if (asset != address(0)) IERC20(asset).safeTransfer(treasury,
amount);
179: else payable(treasury).transfer(amount);
180 emit Purchase(asset, msg.sender, amount, true, block.timestamp);

194 if (!allowedPurchaseAssets[address(0)]) revert
AssetNotAllowedForPurchase();
195: payable(treasury).transfer(msg.value);
196 emit Purchase(address(0), msg.sender, msg.value, false,
block.timestamp);

220 if (asset == address(0)) {
221: payable(to).transfer(address(this).balance);
222 } else {

Recommendation:
Replace the transfer method with the call method and ensure proper
handling of the return value. For example:

​

(bool success,) = payable(_treasury).call{value: msg.value}("");
require(success, "ETH transfer failed");

Status: Fixed

[Info] freeze naming convention
In the Solana program, the freeze function actually toggles the frozen
flag for a VaultData account.

​

/// This method pauses all non authorized contract actions
pub fn freeze(mut ctx: Context<Freeze>, params: FreezeParams) -> Result<()> {
 Freeze::actuate(&mut ctx, ¶ms)
}

impl Freeze<'_> {
 pub fn actuate(ctx: &mut Context<Self>, _params: &FreezeParams) ->
Result<()> {
 let vault_data = &mut ctx.accounts.vault_data;
 vault_data.is_frozen = !vault_data.is_frozen;
 Ok(())
 }
}

The code has same pattern with toggle_purchase , so it’s recommended to
rename this function to follow toggle_* naming convention.

Status: Fixed

[Info] Centralization risk
The owner permission in the contract can transfer the funds in the
contract to the specified address through the migrate function in any
state, and the funds also include the user's staked funds.

​

impl Migrate<'_> {
 pub fn actuate(ctx: &mut Context<Self>, _params: &MigrateParams) ->
Result<()> {
 spl_transfer(
 CpiContext::new_with_signer(
 ctx.accounts.token_program.to_account_info(),
 SplTransfer {
 authority: ctx.accounts.vault_data.to_account_info(),
 from: ctx.accounts.vault_token_account.to_account_info(),
 to: ctx.accounts.sender_token_account.to_account_info(),
 },
 &[&[
 b"vault-data".as_ref(),
 &ctx.accounts.vault_data.admin.to_bytes(),
 &ctx.accounts.vault_data.mint.to_bytes(),
 &[ctx.accounts.vault_data.bump],
]],
),
 ctx.accounts.vault_token_account.amount,
)?;
 Ok(())
 }
}

There is no range limit for the withdrawal period. When
withdraw_duration is 0 or a very large value, there may be certain
risks.

​

impl ChangeWithdrawDuration<'_> {
 pub fn actuate(ctx: &mut Context<Self>, params:
&ChangeWithdrawDurationParams) -> Result<()> {
 ctx.accounts.vault_data.withdraw_duration =
params.new_withdraw_duration;
 Ok(())
 }
}

Recommendation:

It is recommended to use a multi-signature wallet or other methods to
control the risk of single account failure.

Status: Acknowledged

