
Cytonic: A multi-virtual-machine distributed network

badconfig@cytonic.com
www.cytonic.com

5th November, 2024

Abstract
Achieving compatibility among diverse blockchain ecosystems presents a significant
challenge due to differing runtimes and protocols. We propose a method to seamlessly
integrate multiple runtimes, enabling synchronous communication between them. This
is accomplished through a multi-virtual machine architecture that encapsulates various
runtimes, managing transaction execution within a unified framework.

1. Introduction

The prevailing method for connecting different virtual machines and achieving interoperability is
to operate them independently as standalone blockchain systems, linked through a
communication layer—typically a bridge protocol. Examples of such solutions include Polkadot,
Avalanche, and IBC. This approach allows each virtual machine to retain its own networking
layer and storage optimizations. The security and stability of each blockchain depend primarily
on its own integrity and, in some cases, on the reliability of the communication layer.



However, this method has significant drawbacks. By necessitating that all communications
between blockchains are executed asynchronously, it introduces several issues:

● Complex rollback mechanics when cross-chain communication is involved.
● Increased cross-chain vulnerabilities.
● A more complicated user experience.
● Fragmented liquidity.

These trade-offs compromise the efficiency and security of the system, making seamless
interoperability more challenging to achieve.

Definitions:

● Virtual Machine (VM): A program that executes specific opcode operations
within a given context.

● Network Layer: The component of a distributed system that manages
peer-to-peer communications.

● State Transition Function (STF): The mechanism responsible for applying
transactions to the blockchain’s state.

● Compute Units (CU): A metric that quantifies the computational complexity of
various opcodes.

2. Multi-VM

2.1. VM Aggregation

We propose a system where multiple virtual machines operate on the same network layer and
shared storage. By aggregating VMs in this manner, we aim to achieve seamless interoperability
within a unified framework.



In a decentralized system, every virtual machine fundamentally relies on a state transition
function. The following outlines the high-level framework:

The diagram illustrates how the state transition function controls the creation of state changes
through transactions and the blockchain state. Typically, blockchains either employ a single type
of state transition function by selecting a specific virtual machine or use multiple functions that
share the same storage structure, as seen with Arbitrum EVM and Arbitrum Stylus.

2.2. MultiVM Transaction Execution

Since a virtual machine generates state transitions from transactions, multiple virtual machines
can operate concurrently on the same logically separated storage. This setup enables a system
where the appropriate state transition function can be independently selected for each
transaction. As a result, transactions associated with different state transition functions (STFs)
can be processed together within a single state transition.



This approach allows any valid state transition function to be integrated into the block production
mechanism without interfering with the logic of other STFs. The system still operates as a single
STF that encompasses all supported functions, applying unified transactions to a unified state.

2.3. Cross-VM Calls

To achieve seamless interoperability between virtual machines, we introduce Cross-VM calls.
These serve as a messaging protocol between runtimes, allowing payloads to be bridged across
different virtual machines. By utilizing each virtual machine’s native communication methods to
perform actions on the destination side, developers can leverage native tools within each virtual
machine to build interoperable applications.

Technical Overview
Any transaction can execute a Cross-VM call during its runtime. Each virtual machine
independently records its state changes. At the conclusion of the transaction execution, these
changes are merged.



When a call is initiated, the execution of the original virtual machine pauses until the call
completes. After the call returns, execution resumes with the updated state. Recursive calls to the
same virtual machine are permitted, allowing for reentrant calls if the virtual machine itself
supports them.

Cross-VM Compute Unit Estimation
When one virtual machine initiates the execution of another, the compute units (CUs) of the
transaction are carried forward. A Cross-VM call introduces an additional fixed charge to set up
the call context.

While this extra fee eliminates stack limitations for cross-VM calls, the overall execution of the
transaction is still bound by the block’s maximum compute unit limits.

Different virtual machines have their own equivalents of compute units—for instance, gas in the
EVM. When execution shifts to another VM, we use a specific conversion ratio to translate
Cytonic’s compute units into the native units of the target VM.

Although the costs associated with VM opcodes may change over time, this does not lead to
compatibility issues. The opcode costs are designed to evolve, ensuring ongoing interoperability.

Native Token Transactions
The native token is stored across all supported virtual machine storages. Users can transfer native
token balances between different VMs using Cross-VM calls, a feature inherently supported by
the system.

Typically, a Cross-VM call transfers both value and payload simultaneously. However, a
Cross-VM call can also have an empty payload, indicating that the call is solely for value
transfer. This type of call incurs a lower compute unit charge, as it can be processed more
efficiently.



EVM Interface Example
In the EVM, a Cross-VM call is initiated by invoking a call opcode to a specific address. This
address isn’t owned by any user and doesn’t contain a deployed contract; instead, it’s a special
instruction to the EVM runtime to forward the call to another virtual machine.

The call preserves the entire context, using the EVM’s calldata parameter as the arguments for
the cross-VM call along with the destination address. Native token values are propagated by
including the native token within the EVM call.

Solana Interface Example
In Solana, cross-VM calls are implemented using a new built-in program. When an account
invokes this program, it initiates a Cross-VM call to the target virtual machine. This approach
mirrors the EVM interface, where the built-in program acts as a special address.



3. Node Structure

This section describes the part of the Cytonic blockchain architecture that supports multiple RPC
standards.

Cytonic’s node architecture provides solutions for RPC optimizations tailored to user
requirements.
The node structure comprises two main components: the producer node and the RPC nodes.

The producer nodes participate in consensus rounds and perform the following functions:

● Propagate new transactions to the network.
● Validate new blocks.
● Notify RPC nodes of newly validated blocks.

The RPC nodes act as clients to the producer nodes, receiving all network updates and



aggregating blockchain data to ensure compatibility with various virtual machine RPC standards.
Their main functions include:

● Enabling compatibility with existing blockchain RPC APIs.
● Simulating transactions and measuring their execution costs.
● Sending transactions by propagating them to any producer node.

3.1. Producer Nodes Structure

The producer nodes communicate directly with the network layer to receive new blocks. They
maintain optimized versions of the blockchain state for transaction validation, enabling efficient
verification of transactions.

Once a block is finalized across the network, the producer nodes notify all subscribers about the
newly created block.

3.2. RPC Nodes Structure

There are two major types of RPC nodes in the network:

● Unified RPC Nodes: These provide the most informative and user-friendly way
to explore the blockchain.

● Compatible RPC Nodes: These focus on ensuring compatibility with existing
blockchain API standards.



To operate efficiently, RPC nodes can maintain their own copy of the blockchain state or utilize
the producers’ state through an API. They also include their own storage for specific aggregated
block data.

4. Use Cases
This section illustrates future use cases of Multi-VM and its Cross-VM call mechanics in the
DeFi space. While these examples primarily utilize the mechanics described earlier, they
showcase new approaches for building decentralized financial products.

4.1 Cross-VM Asset Transfer
Cross-VM asset transfers for non-native tokens can be implemented using smart contracts that
interact via Cross-VM calls.
This process involves locking the asset on the originating VM and sending information about the
locked amount to the destination VM. On the destination VM, an asset of a different standard is
then released.

Example: Converting an ERC20 Token from EVM to an SPL Token on the Solana VM



Initiate Transfer on EVM:

● The user calls a predefined contract on the EVM, specifying the amount of tokens
to be transferred.

● They provide the destination address on the Solana VM as part of the call
payload.

Cross-VM Call to Solana VM:

● The EVM contract performs a cross-VM call to a corresponding contract on the
Solana VM.

● It propagates information about the destination address and the locked value.

Issue Tokens on Solana VM:

● The Solana VM contract receives the information.
● It issues the required amount of SPL tokens to the specified address.

This approach enables seamless asset transfers across different virtual machines, enhancing
interoperability and expanding the possibilities within decentralized finance.

4.2. Cross-VM Automated Market Maker

This example demonstrates how Cross-VM calls enable the infrastructure of one blockchain to
be utilized on another. Specifically, it illustrates the process of swapping an ERC20 token for a
native token on a Solana VM decentralized exchange (DEX) and then storing the resulting
tokens in an EVM account.

This scenario combines the previously described non-native asset transfers with the ability to
invoke decentralized applications (dApps) after the transfer.



Initiate Transfer and Swap Request:

● The user transfers an ERC20 token to an SPL token on the Solana VM.
● The token is sent to the DEX address, including a swap and backward transfer call

as part of the transaction.

Execution on Solana VM:

● The Solana VM receives the cross-VM asset transfer.
● It swaps the SPL token for a native token on the DEX.
● The native token is transferred to the cross-VM asset transferring contract.

Backward Transfer Execution:

● The cross-VM asset transferring contract performs a backward transfer, which is a
cross-VM call with no payload.

Receipt of Native Token:

● The native token is received by the user’s EVM address.

This process showcases how Cross-VM calls can facilitate complex interactions between
different virtual machines, allowing users to leverage DeFi functionalities seamlessly across
different blockchain architectures.

5 Summary

We have introduced Cytonic, a blockchain architecture that integrates multiple virtual machines
(VMs) operating on a shared network layer and storage.



By enabling Cross-VM call mechanics, we achieve seamless interoperability between different
VMs. This approach enhances transaction validation efficiency and expands the capabilities for
decentralized applications.

Cytonic employs producer nodes that participate in consensus and validate new blocks, and RPC
nodes that aggregate blockchain data to support various RPC standards. Together, these
components improve the network’s usability and functionality.

In conclusion, Cytonic provides a unified framework that facilitates high interoperability among
diverse VMs, optimizing transaction processes and ensuring compatibility with existing
blockchain standards.


